ALLIANCE 👍 TECH

Mechanical Engineering

AGREEMENT FOR FREE-MOBILITY

www.alliance4tech.eu

Alliance 4 Tech

Vision:

Develop strategic alliance of 4 top Engineering Schools, of different European cultures, located in «global cities» in the «economic heart» of Europe, forming a European Campus without borders for their students and their faculty

- With common values
- Promoting common programmes and providing students with the opportunity to spend one or two terms in partner universities
- Encouraging exchange of faculty members
- Sharing critical technological infrastructures to ensure critical mass
- With a common strategy towards emerging countries (joint promotion, shared locations)

ALLIANCE 4 tech

Values:

Through their joint actions, the values promoted by the Alliance are the following:

- Innovation and Entrepreneurship
- Leadership and Creativity
- Social Responsibility and Ethics
- Cultural Diversity and International Environment

Free-mobility MSc courses

- Students enrolled in any of the partner universities are entitled to take <u>up to 60</u> <u>credits (ECTS) from the other institutions</u>
- Graduates will receive their standard Diploma from their Home University plus a <u>Joint</u> <u>Programme Certificate</u> with the 4 logos and the signature of the 4 Rectors

Free-mobility MSc courses

- The "Alliance4Tech Certificate" shall be awarded to students selected for the A4T mobility programme who must fulfil the following requirements:
 - They have spent a <u>visiting period abroad in at</u> <u>least 2 partner institutions</u> of the A4T programme;
 - They have gained at least 30 ECTS abroad;
 - They have gained <u>at least 6 ECTS in each visited</u> <u>institution</u>.

Free-mobility MSc courses

- The number of participants will be limited to a maximum of <u>ten students</u> from each university per year <u>in addition to already</u> <u>existing standard Erasmus agreements</u>
- Students are encouraged to have <u>master</u> <u>thesis</u> <u>supervisors</u> from at <u>least</u> two <u>universities</u>. The thesis must be written in English and has to follow the examination regulations of the home University

ALLIANCE 4 TECH

220 shared courses (1248 ECTS)

131 (60%) taught in English

Institution	Lecturing Period	Exam Session	Notes
PM	October-January	February	
	March-June	July	
		September (extra)	
CS	September-January	January	M1
	February-June	June-July	M1
	September-March	April	M2
TUB	October-February	February-March	
	April-July	July-September	
UCL	September-February	March	
		May-September (Project)	

Mechanical Engineering (Politecnico di Milano)

Overall structure:

62 ECTS – grounding (mandatory) courses

16-20 ECTS – track (mandatory) courses

18-22 ECTS – track (elective) courses

20 ECTS – master thesis

http://www.ccsmecc.polimi.it/en/presentation/laurea-magistrale-equivalent-to-a-msc/

Mechanical Engineering (Politecnico di Milano)

1st year: Fundamentals (grounding mandatory courses)	ECTS
Control and Actuating Devices for Mechanical Systems	9
Applied Metallurgy	6
Energy Systems LM	7
Advanced Manufacturing Processes	10
Machine Design 2	10
Mechanical System Dynamics	5
Measurements	5
Design and Management of Production Systems	10
2nd year: 8 possible concentrations	
Production Systems (project management, manufacturing systems, etc.)	38
Mechatronics and Robotics (mechatronic systems, automation and control of machines/robots/vehicles.etc.)	38
<i>Virtual Prototyping</i> (tools & methodologies for virtual prototyping, design methods, etc.)	38
Internal Combustion Engines and Turbomachinery (energy systems, thermodynamic and fluid dynamics of combustion engines and turbomachinery, etc.)	38
Advanced Mechanical Design (design and computational methods, mechanical systems reliability, etc.)	38
Advanced Materials and Technology (steelmaking, innovative materials, advanced manufacturing processes, etc.)	38
Ground Vehicles (vehicle dynamics and control, vehicle design, etc.)	38
<i>Machine Tools and Manufacturing Systems</i> (machine tools, manufacturing systems, automatic control, etc.)	38
Master thesis	20

Duration	2 years
Calendar	Oct/Jan – Mar/Jun
Course size (≈)	5-10 ECTS
Workload (≈)	120 ECTS
Enrolments (≈)	400 (MSc only, per year)

Admissions:

• Bachelor degree, transcripts, English certification

Notes:

- Entirely taught in English
- About 20% of international students
- •77 courses (MSc only)
- •212 Faculty members (BSc+MSc)
- Experimental and computation activities included in most of the MSc courses
- Full-lab courses available

LINK

ALLIANCE 4 tech

Mechanical Engineering (University College London)

Overall structure:

MSc Mechanical Engineering MSc Power Systems Engineering

45 ECTS – mandatory courses

7.5 ECTS – track (elective) courses

37.5 ECTS – master thesis

Mechanical Engineering (University College London)

Courses	ECTS
MECHGN01 Ship Dynamics	15
MECHGN02 Ship Structures	15
MECHGN03 Ship Hydrodynamics	15
MECHGM01 Applied Thermodynamics & Turbomachinery	7.5
MECHGM02 Power Transmission & Auxilliary Machinery Systems	7.5
MECHGM03 Materials & Fatigue / Fracture Analysis	7.5
MECHGM04 Vibrations, Acoustics & Control	7.5
MECHGM05 Advanced Computer Applications in Engineering	7.5
MECHGM06 Heat Transfer & Heat Systems	7.5
MECHGM11 Electrical Machines and Power Electronic Systems	7.5
MECHGR12 Electrical Power Systems and Electrical Propulsion	7.5
MECHG020 New & Renewable Engineering Systems	7.5

Duration	1 year (12 months)
Calendar	Oct-Mar (taught) Apr-Sep (project)
Course size	7.5/15 ECTS
Workload	90 ECTS
Enrolments	60-70 MSc, per year

Admissions:

• Bachelor degree, transcripts, English certification, references x2

Notes:

- Entirely taught in English
- About 60% of international students
- 12 courses available (MSc only)
- 40 Faculty members (BSc+MSc)
- Experimental and computation activities <u>not</u> included in most of the MSc courses
- Projects and full-lab courses not available

LINK

Mechanical Engineering (University College London)

	UCL		
SEM	CODE - COURSE	LANG.	ECTS
1	MECHGN01 Ship Dynamics	Eng	15
1	MECHGN02 Ship Structures	Eng	15
1	MECHGN03 Ship Hydrodynamics	Eng	15
1	MECHGM01 Applied Thermodynamics & Turbomachinery	Eng	7,5
1	MECHGM02 Power Transmission & Auxilliary Machinery Systems	Eng	7,5
1	MECHGM03 Materials & Fatigue / Fracture Analysis	Eng	7,5
1	MECHGM04 Vibrations, Acoustics & Control	Eng	7,5
1	MECHGM05 Advanced Computer Applications in Engineering	Eng	7,5
1	MECHGM06 Heat Transfer & Heat Systems	Eng	7,5
1	MECHGM11 Electrical Machines and Power Electronic Systems	Eng	7,5
1	MECHGR12 Electrical Power Systems and Electrical Propulsion	Eng	7,5
1	MECHG020 New & Renewable Engineering Systems	Eng	7,5

Mechanical Engineering TU Berlin

30 ECTS LP: Specialisation Elective Module

36 ECTS LP: Profile Elective Module

24 ECTS LP: Free Elective Module

6 ECTS LP: Project

6 ECTS LP: Internship

18 ECTS LP: Master Thesis

Mechanical Engineering TU Berlin

Duration	2 years
Calendar	Oct/Feb – Apr/Jul
Course size (≈)	6 - 12 ECTS
Workload (≈)	120 ECTS
Enrolments (≈)	300 (MSc Mech. Eng.)

Admissions:

• Bachelor degree, transcripts, German certification

Notes:

- Taught in German and English
- About 20% of international students
- More than77 courses (MSc only)
- 12 Departments in Mech. Eng. (BSc+MSc)
- Experimental and computation activities included in few of the MSc courses
- Full-lab courses available
- Internship in industry or research institution

Mechanical Engineering TU Berlin

			ТИВ		
(YR.)	SEM	DEPT.	CODE - COURSE	I ANG.	FCTS
1 /2	W/S	35351100	50364 - Integrative Product Development	Ger	6
		00001100		00.	Ū
1./2.	W.	35361500	50147 - Applications of industrial Information Technology	Ger	6
1./2.	W./S.	35351300	50459 - Sustainable Product Engineering	Ger	6
1./2.	S.	35351200	50170 - Design against Stress and Vibrations	Ger	6
1./2.	S.	35351300	50388 - Cost Management and Law in Product Development	Ger	6
1./2.	S.	35351400	50232 - Elements of Mechatronics	Ger	6
1./2.	S.	35351200	50158 - Balancing Techniques	Ger	6
1./2.	W.	35351200	50276 - Strength and Fatigue	Ger	6
1./2.	S.	35371400	50515 - Project Multi-Body Dynamics	Ger	6
1./2.	W.	35371400	50384 - Continuum Dynamics	Ger	6
1./2.	W.	35351100	50572 - Simulation of Mechatronical Systems	Ger	6
1./2.	W.	35351200	50549 - Rotor Dynamics	Ger	6
1./2.	W.	35351300	50315 - Gear Technologies	Ger	6
1./2.	S.	35351200	50170 - Design against Stress and Vibrations	Ger	6
1./2.	S.	35361700	50632 - Micro- and Nanotechnology	Ger	6
1./2.	W.	35361700	50300 - Functional Components of Mikrotechnology I	Ger	6
1./2.	S.	35361100	50301 - Functional Components of Mikrotechnology I	Ger	6
1./2.	W.	35311100	50641 - Wind Energy - Fundamentals	Ger	6
1./2.	W.	35311100	50590 - Fluidflowmachine - Components	Ger	6
1./2.	S.	35311100	50589 - Fluidflowmachine - Design	Ger	6
1./2.	S.	35311100	50297 - Fluid System Dynamics- Operation	Ger	6
1./2.	W.	35314100	50006 - Fundamentals of Combustion	Ger	6
1./2.	S.	35314100	50007 - Combustion dynamics	Ger	6
1./2.	S.	35311700	50067 - Combustion kinetics	Eng	6
1./2.	S.	35341500	50381 - Design of Turbo Machinery	Ger	6
1./2.	W.	35341500	50613 - Turbomachinery II - Aerodynamics of Turbomachinery	Ger	6
1./2.	W.	35341500	50403 - Basics of Aeroengines	Ger	6
1./2.	S.	35341500	50404 - Specialization Aeroengines	Ger	6
1./2.	S.	35341500	50612 - Basics of Turbomachinery	Ger	6
1./2.	W.	35314100	50006 - Fundamentals of Combustion	Ger	6
1./2.	W.	35331100	50027 - Fluid Dynamics in Combustion Engines	Ger	6
1./2.	W.	35331100	50026 - Turbochargers	Eng	6
1./2.	W.	35331100	50630 - Internal Combustion Engines 2	Ger	6
1./2.	S.	35331100	50614 - Thermodynamics in Combustion Engines	Ger	6

		TUB		
SEM	DEPT.	CODE - COURSE	LANG.	ECTS
S.	35331100	50629 - Internal Combustion Engines 1	Ger	6
W/ /S	35361300	50020 - Datananalysa hai sybar-physischen Systeman	Gor	6
vv./3.	33301300	Souzo - Datenanalyse bei cyber-physischen Systemen	Gei	0
S.	35361500	50327 - Basic Principles of industrial Information Technology	Ger	6
W./S.	35361400	50160 - Automation Engeneering	Ger	6
W./S.	35361100	50494 - Production Technology	Ger	6
S.	35361100	50172 - Bearbeitungssystem Werkzeugmaschine II	Ger	6
W./S.	35361200	50457 - Assembly Technology	Ger	6
S.	35314100	50011 - Project in thermo-fluid dynamics	Ger	6
W./S.	35374100	50002 - Project Modelling lightweight structures	Ger	6
W./S.	35371300	50022 - Experimental Practice in Mechanics	Ger	6
W./S.	35331100	50018 - Project Power Train Systems	Ger	6
W./S.	35361500	50530 - Project Virtual Product Creation	Ger	6
W./S.	35351100	50521 - Product Development Project	Ger	6
W./S.	35361300	50537 - Quality Management Project	Ger	6
W./S.	35361400	50161 - Project automation engeneering	Ger	6
W./S.	35351300	50510 - Project Machinery System Design	Eng	6
W./S.	35311100	50299 - Fluid System Dynamics - Project	Ger	6
W./S.	35361200	50496 - Production Technological Project	Ger	6
W.	35371200	50528 - Project "Simulation of tribological contacts"	Ger	6
W./S.	35351400	50500 - Project actuators and sensors / master	Ger	6
		50509 - Engineering Design, Structure and Rotor Dynamics		
S.	35351200	Project	Ger	6
W./S.	35351600	50514 - Project Medical Device Technology	Ger	6
S.	35371200	50525 - Project Friction Physics	Ger	6
			_	
W./S.	35371100	50527 - Project Simulationtools and their application	Eng	6
W.	35371400	50465 - Nonlinear and Chaotic Oscillations	Eng	6
W.	35341400	50287 - Flight Control	Eng	6
W.	35365300	50055 - Total Supplier Management	Eng	6
W.	35365300	50056 - Einführung in die Automobilindustrie	Eng	6
W./S.	35311100	50068 - Flow Measurement Methods	Eng	6
S.	35331900	50458 - Multi-agent transport simulation	Eng	6
S.	35321200	50463 - Project Neuroergonomics	Eng	6
W.	35321200	50142 - Project Psychophysiology	Eng	6
W.	35371100	50329 - Fundamentals of Continuum Theory I	Eng	6
S.	35371100	50330 - Fundamentals of Continuum Theory II	Eng	6

Industrial Engineering Centrale Supelec

60 ECTS M1: Grounding courses

60 ECTS M2: 40 ECTS Elective courses 20 ECTS Master thesis

ALLIANCE 4 TECH

Industrial Engineering Centrale Supelec

Duration	2 years
Calendar	M1: Sep/Jan – Feb/Jun M2: Sep/Mar
Course size (≈)	3 ECTS
Workload (≈)	120 ECTS
Enrolments (≈)	150 students

Admissions:

• ...

Notes:

• 40 courses offered to A4T students, 25 in English (MSc only)

Industrial Engineering Centrale Supelec

	CS		
SEM	CODE - COURSE	LANG.	ECTS
1	EN1110 - Advanced Heat Transfer	Eng	3
2	EN1120 - Heat Transfer	Eng	3
2	EN1201 - Fluid Mechanics	Eng	3
2	EN1500 - Nuclear Energy	Eng	3
2	EN1600 - Renewable Energy	Fr	3
2	EN1700 - Intro to neutronics	Fr	3
2	EN1800 - Numerical Methods	Eng	3
1,2	EN1920 - Aerodyn & Energy labs	Eng-Fr	2
1, 2	EN2910 - Aircraft design	Eng	3
2	EN2930 - Powertrain design	Fr/Eng	3
1	EN2940 - Electrical aircraft	Fr/Eng	3
1	MA2610 - Scientific computation	Fr	3
2	MA2620 - ODE & dynamics systems	Fr	3
2	MA2814 - Intro to random modelling	Eng	3
2	MA2826 - Discrete Math for systems	Fr	3
1, 2	MG1200 - Civil Eng	Fr	3
1	MG1300 - Structural Dynamics and Acoustics	Eng	3
1	MG1400 - Mechanical behaviour of materials	Fr	3
2	MG1500 - BioMechanics	Fr	3
1	MG1600 - Nanomechanics	Eng	3

	CS		
SEM	CODE - COURSE	LANG.	ECTS
1	MG1700 - Maintenance of a railroad way	Fr	3
2	MG2812 - Introduction to acoustic	Fr	3
2	MG2814 - Economics and design of dams	Fr	3
2	MG2815 - Soil and granuler materials	Fr	3
2	MG2816 - MEMS	Fr	3
2	MG2817 - Application of finite elt methods	Eng	3
2	MG2818 - Oil & Gas explo and production	Eng	3
2	MG2910 - Sustainable buildings and architecture lab	Fr	3
2	MG2920 - Powertrain design	Eng	3
1	PH2100 - Waves	Eng-Fr	3
1	PH2200 - Synchrotron	Eng	3
1	PH2250 - Nuclear reactor	Fr	3
1	PH2300 - Structure of matter	Eng-Fr	3
1	PH2450 - Chemistry for industry	Eng	3
2	PH2813 - Advanced material for ICT	Eng	3
2	PR1100 - Introduction to Materials	Eng	3
1, 2	PR3100 - Chemical Eng	Eng	3
1, 2	PR4300 - Cogeneration and energy production	Eng	3
2	SE2650 - Risk assessment & Mngnt	Eng	3
1, 2	WP5200 - Innovation Project	Eng	9

ALLIANCE 4 tech